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The effective pair potential between mesoscopic charged particles in a neutralizing background medium
takes a Yukawa form exp�−�r� /r with screening length �−1. We consider a dilute suspension of such Yukawa
particles dispersed in a solvent with correlation length ���−1 and show that the Yukawa interaction is screened
if the pair potentials between solvent particles exhibit Yukawa decay with the same screening length �−1.
However, if the solvent pair potentials are shorter ranged than the solute Yukawa potentials, then the effective
potential between pairs of solute particles is unscreened, i.e., the effective potential between the solute particles
is equal to the bare potential at large particle separations.
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It is well known that the effective potential between
charged particles immersed in a neutralizing mobile medium
is shorter ranged than the bare Coulomb interaction between
the particles—the interaction is screened. At large interpar-
ticle separations r, the effective pair potential between par-
ticles �ef f�r��exp�−�r� /r. Screening effects due to the neu-
tralizing medium are described by an inverse screening
length � �1�. Such Yukawa potentials are ubiquitous in
charged colloidal systems arising in the classic linearized
Poisson-Boltzmann or Derjaguin-Landau-Verwey-Overbeek
�DLVO� theories for the effective potential between spherical
charged colloids in solution �2�. Other systems in which ef-
fective Yukawa potentials arise include those between dust
grains in plasma systems �3� and some proteins in solution
�4�. The Yukawa potential not only arises in diverse physical
problems, but is also interesting in its own right �5�. Note
that the motivation for considering effective potentials in
complex systems is driven by the fact that a theoretical treat-
ment of the full mixture is often very difficult, particularly
when there is a big size asymmetry between different com-
ponents of the mixture. It is profitable to integrate out the
degrees of freedom of one or more of the components,
thereby incorporating formally their influence into an effec-
tive Hamiltonian for the remaining particles �6�.

In this Rapid Communication, we consider a simple
model for binary mixtures of charged particles suspended in
a neutralizing medium. We examine a dilute suspension of
Yukawa particles in a solvent with correlation length
���−1 and we investigate the �additional� screening effect
that the solvent particles have on the effective interaction
between the solute Yukawa particles. Specifically, we con-
sider a class of binary mixtures in which the pair potentials
are of the form �ij�r�=�ij

sr�r�+�ij exp�−�r� /�r, where indi-
ces i , j=1,2 label the two different species and where �ij

sr�r�
is a contribution to �ij�r� that is short ranged in comparison
with the Yukawa term. The amplitudes �ij depend on the
charges on the particles. For example, in modeling a binary
mixture of charged spherical colloids, we would take �ij

sr�r�
to be a hard-sphere interaction potential and �ij �ZiZj, where
Zi is the �renormalized� charge on the colloid of species i �2�.
However, in what follows directly we will not make a par-
ticular choice for �ij

sr�r� or for the sign of �ij. We denote
species 1 as the solvent and species 2 as the solute. We focus

on the limit of the number density of the solute particles
�2→0 and investigate the form of the effective potential
�22

ef f�r� between the solute particles in this limit. In particular,
we obtain the general result that when �11,�12�0, so that
there is a Yukawa tail proportional to exp�−�r� /r present in
�11�r� and �12�r�, �22

ef f�r� decays faster than �22�r� as
r→	 provided the solvent bulk correlation length ���−1.
On the other hand, when �11=�12=0 and there is no Yukawa
tail in �11�r� and �12�r�, the effective potential
�22

ef f�r�→�22�r� for r→	. This Yukawa “screening” effect is
independent of the sign of the “charges,” i.e., independent of
the signs of �ij. The results can be restated in terms
of the solvent-mediated potential W22�r�, defined via
�22

ef f�r���22�r�+W22�r� �6�. W22�r� depends on the nature
of the solvent and on the solvent-solute interaction. If
W22�r�→0 faster than �22�r�, as r→	, then we describe the
solute-solute interaction as “unscreened”. However, if W22�r�
partially or completely cancels the bare potential �22�r� at
large r, we describe the solute-solute interaction as
“screened”. In certain mixtures where the bare interactions
are purely repulsive we find “superscreening”, i.e., �22

ef f�r�
can be attractive.

We may determine the effective interaction between two
solute particles at infinite dilution from the solute-solute ra-
dial distribution function g22�r� using the well-known result
�6�


�22
ef f�r� = − ln�g22�r�� , �1�

where 
= �kBT�−1 is the inverse temperature and g22�r� is
evaluated in the limit �2→0. For large r, when 
�22

ef f�r� is
small, it follows that


�22
ef f�r� � − h22�r�, r → 	 , �2�

where hij�r��gij�r�−1, and in order to determine the
asymptotic behavior of �22

ef f�r� we must ascertain that of
h22�r�. The total pair correlation functions hij�r� are related
via the Ornstein-Zernike �OZ� integral equations �1� to a set
of pair direct correlation functions cij�r�. The OZ equations
can be solved formally in Fourier space and the solution
written �for arbitrary concentration� as
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ĥij�q� = Nij�q�/D�q� , �3�

where ĥij�q� denotes the three-dimensional Fourier transform
of hij�r�. The three functions share the same denominator

D�q� = �1 − �1ĉ11�q���1 − �2ĉ22�q�� − �1�2ĉ12�q�2, �4�

where �i is the density of species i. The numerators Nij�q�
may be obtained from Ref. �1� or �7�. Taking the inverse
Fourier transform of Eq. �3�, evaluating the integral by a
contour integration around a semicircle in the upper half of
the complex q plane, and assuming that the singularities of

ĥij�q� are simple poles, one can express hij�r� as a sum of
contributions from the set of poles at �qn� in the upper half of
the complex plane �7�:

rhij�r� = 	
n

Aij
n exp�iqnr� , �5�

where Aij
n is the amplitude associated with the pole at qn. The

poles are obtained from the set of solutions of D�qn�=0. The
amplitude Aij

n is related to the residue Rij
n of qNij�q� /D�q� by

Aij
n =Rij

n /2�. The poles are either purely imaginary, q= i�0,
or occur as a conjugate pair q= ±�1+ i�̃0 �7�. A purely
imaginary pole gives a monotonic contribution to rhij�r�
of the form Aij exp�−�0r�. A conjugate pair of poles
gives a damped oscillatory contribution of the form

2Ãij exp�−�̃0r�cos��1r− 
̃ij�, where Ãij and 
̃ij denote the am-
plitude and phase, respectively �7�. In general, there are an
infinite number of poles. However, the asymptotic decay
r→	 is determined by the pole�s� with the smallest imagi-
nary part �0 �or �̃0�.

Away from any critical points, the direct pair correlation
functions cij�r� are known to decay as cij�r��−
�ij�r�,
r→	 �1�. When �ij�r� has a Yukawa contribution it
is convenient to separate cij�r� in the following way: cij�r�
=cij

sr�r�−
�ij exp�−�r� /�r, which defines cij
sr�r�, the short-

ranged piece in cij�r�, dependent on the form of �ij
sr�r� and on

the state point. In Fourier space it follows that

ĉij�q� = ĉij
sr�q� − �ij/�q2 + �2� , �6�

where �ij =4�
�ij /�.

We seek the pole�s� in ĥij�q� with the smallest imaginary
part. First, we consider the case when there is no Yukawa
contribution to the solvent potentials, i.e., �11=�12=0. The
asymptotic decay of h11�r� in the pure solvent of species 1 is

determined by the pole�s� in ĥ11�q�, given by the solution of
D1�q�=1−�1ĉ11

sr �q�=0, with the smallest imaginary part �0

and the bulk solvent correlation length �=�0
−1 �7�. Consider

now the decay of hij�r� in the full mixture. Making the sepa-
ration of ĉij�q� given by Eq. �6� and substituting into Eq. �4�
we obtain

D�q� = A�q� + �2�22D1�q�/p , �7�

where p=q2+�2 and A�q�=D1�q��1−�2ĉ22
sr �q��

−�1�2�ĉ12
sr �q��2. The equation D�q�=0 has a solution

q= i��2+�2�22D1�q� /A�q��1/2, which implies that in the limit
�2→0 there is a pure imaginary pole at q=q1� i�, provided

the ratio D1�q� /A�q� remains finite in this limit. Since we
have assumed that there is no Yukawa contribution in �11�r�,
there is no pole at q1 for the pure solvent and D1�q1� is
nonzero and finite. If in addition, we assume that both ĉ12

sr �q1�
and ĉ22

sr �q1� are finite it follows that in the limit �2→0,
D1�q� /A�q�→1 for q
q1. The amplitude of the contribution
to hij�r� from this purely imaginary pole at q1 is given by �7�

Aij =
q1Nij�q1�
2�D��q1�

, �8�

where the prime denotes the derivative with respect to q. It is
straightforward to show that in the limit �2→0,
D��q1�
−2q1D1�q1� /�2�22. Using this result and evaluating
the numerators Nij�q1�, we find that the amplitudes of the
contributions to hij�r� from the purely imaginary pole at
q1� i� are

A11 = −
ĉ12

2 �q1��22

4�D1
2�q1�

�2
2 + O��2

3� ,

A12 =
ĉ12�q1��22

4�D1�q1�
�2 + O��2

2� ,

A22 = −
�22

4�
+ O��2� . �9�

These results obey the rule A12
2 =A11A22, which general con-

siderations demand �7�. Note that in the limit �2→0 the am-
plitudes A11,A12→0. Thus the contributions from the pole at
i� to the decay of h11�r� and h12�r� are vanishingly small, as
one would expect on physical grounds. Note further that in
the same limit, A22 tends to a nonzero constant value
−�22/4�=−
�22/� which is independent of any properties
of the solvent, i.e., the pole at q1� i� gives a contribution to
rh22�r� of the form −�
�22/��exp�−�r�. Thus from Eq. �2�
one finds that as r→	, �22

ef f�r�→�22�r�. In summary, when
�11=�12=0, the effective interaction between the solute par-
ticles is identical to the bare interaction as r→	; the solute-
solute interaction is unscreened. Of course the argument we
have presented supposes that the pole q1� i� is the leading-
order one, i.e., it has the smallest imaginary part. If the pure
solvent has a correlation length ���−1 then one expects the
asymptotic decay of all three correlation functions
rhij�r��exp�−r /�� and �22

ef f�r� to be longer ranged than
�22�r�. Henceforward we restrict consideration to cases
where ���−1.

We turn now to the more realistic case when �11,�12
�0, i.e., all three pair potentials have Yukawa tails. Proceed-
ing in a similar manner as above �see also the Appendix in
Ref. �8�� the denominator function �4� takes the form
D�q�=a+b / p+c / p2, where a= �1−�1c11

sr �q���1−�2c22
sr �q��

−�1�2�c12
sr �q��2, b= �1−�1c11

sr �q���2�22+ �1−�2c22
sr �q���1�11

+2�1�2c12
sr �q��12, and c=�1�2��11�22−�12

2 �. One set of
solutions to the equation D�q�=0 is given by
p±=−�b±�b2−4ac� /2a. This leads to purely imaginary poles
at q±= i�0

±= i��2− p±, provided we assume that the functions
cij

sr�q� are well behaved �finite and differentiable� on the
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imaginary axis around q±. The leading-order pole corre-
sponds to p−, and in the limit of vanishing density �2=0 �i.e.,
c=0� there is a pole at q= i�, so that rhij�r��Aij

− exp�−�r�,
r→	. For small concentrations of species 2 we Taylor ex-
pand p− in powers of c and find that the leading-order pole is
given by

�0
− = � +

�12
2 − �11�22

2��11
�2 + O��2

2� . �10�

Using Eq. �8� we calculate the amplitudes Aij
− of the contri-

butions from this pole to the correlation functions hij�r�:

A11
− =

�12
2 ��12

2 − �11�22�
4��11

3 ��2

�1

2

+ O��2
3� ,

A12
− = −

�12��12
2 − �11�22�
4��11

2 ��2

�1

 + O��2

2� ,

A22
− =

��12
2 − �11�22�

4��11
+ O��2� . �11�

Note that the coefficients of the leading-order terms are in-
dependent of cij

sr�r� and that the amplitudes obey the rule �7�
�A12

− �2=A11
− A22

− . In the simplest model of a charged system
one expects �12

2 =�11�22 since �ij �ZiZj, the product of the
charges on each species. We refer to this situation as the
“ideal” mixing rule �8�. Then the coefficients of the leading-
order terms in Eq. �11� vanish identically and for all three
hij�r� the amplitudes corresponding to the pole at q1= i� will
be zero in the limit �2→0. Thus the asymptotic decay of
h22�r� �and therefore of �22

ef f�r�� is determined by the next
order pole, which generally has �0

−1=���−1, so that r�22
ef f�r�

decays as exp�−r /��, i.e., faster than �22�r�, so that the in-
teraction between species 2 solute particles is screened. In
the physical systems where �12

2 ��11�22, there will still be
partial screening since one expects the difference
��12

2 −�11�22� to be small and then �22
ef f�r� will decay, as

r→	, with the same exponential decay length �−1 as the
bare potential, but with a reduced amplitude proportional to
��12

2 −�11�22�. We now display results for a number of model
systems that confirm these general predictions.

The first class of systems is a mixture in which the par-
ticles interact via purely repulsive �point� Yukawa pair po-
tentials for which �ij

sr�r��0 and �ij�r�=�ij exp�−�r� /�r
�8,9�. We denote this system A. The structure and phase be-
havior is described in Ref. �8�. In this system the effective
potential �22

ef f�r� decays faster than the bare potential �22�r�
reflecting the Yukawa decay of the solvent �species 1� poten-
tials �see Fig. 1�. We compare with system B in which
�22�r� is the same as in system A but where the solvent
potentials are modified slightly to hasten the Yukawa decay
at large r, i.e., �11�r�=�11 exp�−�r−���r�10� /�r and
�12�r�=�12 exp�−�r−���r�10� /�r. In both systems we
choose pair potential parameters 
�11=1, 
�22=4 and the
mixing rule �12= �1+����11�22 where the parameter � mea-
sures the degree of nonideality �8�. The state point has sol-
vent density �1�−3=3 and solute density �2�−3=10−6,

corresponding to the dilute limit. In system B we choose
�=10−5, which is sufficiently small that the solvent radial
distribution functions g11�r� and g12�r� are almost indistin-
guishable from those in system A �10�. Figure 1 displays
�22

ef f�r� calculated using the hypernetted chain �HNC� closure
to the OZ equations �1�, which is expected to be a very
reliable approximation for this model fluid �8�. For system A
with �=0 �solid line� there is screening; �22

ef f�r� is much
shorter ranged than the bare potential �22�r� �dotted line�. In
system B with �=0 �dashed line� �22

ef f�r� is indistinguishable
from that in system A at small r, but for �r�2 the results
differ significantly—there is a maximum near �r=3.3 and
for �r�4, �22

ef f�r�→�22�r�; the solute-solute interaction is
unscreened. For �=0.1 in system A �dot-dashed line� �22

ef f�r�
has a pronounced minimum near �r=0.9 and is attractive for
larger r as the amplitude A22

− �0—see Eq. �11�. We refer to
this scenario as superscreening. It is remarkable that such an
effective attraction arises in a system where all the bare in-
teractions are purely repulsive and this constitutes a dramatic
signal that for ��0 the fluid exhibits liquid-liquid phase
separation when the densities of the two components are suf-
ficiently high �8�.

The second class of systems is that in which the particles
have a hard-core interaction mimicking �charged� spherical
colloids. In system C the pair potentials are of the form
�ij�r�=�HS�r�+�ij exp�−�r� /�r, where �HS�r�=	 for r��
and 0 for r��, the hard-sphere diameter �11�. We choose the
parameters �=0.3�−1, 
�11=0.1, 
�12=0.2, 
�22=0.4, corre-
sponding to the case where the sign of the charge is the same
on both species but the magnitude Z2=2Z1. We compare with
system D in which the charges on the particles have the same

FIG. 1. The effective solute-solute potential �22
ef f�r� for solvent

density �1�−3=3 and �2→0 calculated using the HNC closure.
Solid line: system A, the point Yukawa mixture, with �=0 and
dot-dashed line with nonideality parameter �=0.1. The dashed line
is for system B ��=0� where the solvent potentials decay faster than
for the Yukawa case. Results are compared to the bare potential
�22�r� �dotted line�. The inset displays the radial distribution func-
tions g11�r� �solid line� and g12�r� �dashed line� for �=0. On this
scale, there is no visible difference between results in systems A and
B.
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magnitude as in system C but the opposite sign, 
�12=−0.2;
all the other parameters remain the same. The final compari-
son is with system E in which the solvent �species 1� par-
ticles are neutral hard spheres: �11=�12=0 while �22�r� is the

same as in systems C and D �with 
�22=0.4�. In Fig. 2 we
display the results for �22

ef f�r� calculated using the Percus-
Yevick �PY� closure to the OZ equations �1� for these three
systems at the solvent density �1�3=0.5 and solute density
�2�3=10−6. The PY closure should be reasonably accurate
for such hard-core systems with additional weak Yukawa
tails. We see that in system C �dashed line� and D �dot-
dashed line� �22

ef f�r� decays much more rapidly than in sys-
tem E �solid line� where �22

ef f�r�
�22�r� for r�4�, i.e., the
solute-solute interaction is unscreened.

Screening occurs in both systems C and D. Perhaps sur-
prisingly, the screening effect is stronger in system C where
the solvent particles have the same sign charge as the solute
particles. Note that in case D where the solute particles have
the opposite sign charge to the solvent particles, �22

ef f�r� can
become quite large and positive at small and intermediate
values of r, as the magnitudes of the charges are increased.
In this case the screening effect discussed here, which ap-
plies to the ultimate r→	 decay of �22

ef f�r�, becomes visible
only at very large values of r.

In this Rapid Communication we have shown that in
Yukawa mixtures the interaction between particles of one
species can be screened by the other species. The screening
effect does not depend on the sign of the charges on the
particles—see Eq. �11�—one observes like-charge screening,
in contrast with standard Coulombic screening. Our results
may have implications for the effective interactions in mod-
els of charged binary colloidal suspensions.
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FIG. 2. The effective potential �22
ef f�r� for solvent density

�1�3=0.5 and �2→0 calculated using the PY closure for hard-core
Yukawa mixtures. Dashed line, system C �
�11=0.1, 
�22=0.4,

�12=0.2�; dot-dashed line, system D �
�12=−0.2�; and solid line,
system E �
�11=0, 
�12=0, 
�22=0.4�. In systems C and D, �22

ef f�r�
is shorter ranged than the bare potential �22�r� �dotted line� but in
system E, �22

ef f�r�
�22�r� for r�4�; there is no screening. The
inset displays the corresponding total correlation function h11�r� for
systems C, D, and E.
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